
1

Analysis of Techniques For Building
Intrusion Tolerant Server Systems

Feiyi Wang, Raghavendra Uppalli, Charles Killian
Advanced Networking Research

MCNC Research & Development Institute
Research Triangle Park, North Carolina, NC 27709

Abstract— The theme of intrusion detection systems (IDS) is
detection because prevention mechanism alone is no guarantee to
keep intruders out. The research focus of IDS is therefore on how
to detect as many attacks as possible, as soon as we can, and at
the same time to reduce the false alarm rate. However, a growing
recognition is that a variety of mission critical applications
need to continue to operate or provide a minimal level of
services even when they are under attack or have been partially
compromised; hence the need forintrusion tolerance. The goal of
this paper is to identify common techniques for building highly
available and intrusion tolerant server systems and characterize
with examples how various techniques are applied in different
application domains. Further, we want to point out the potential
pitfalls as well as challenging open research issues which need
to be addressed before Intrusion Tolerant Systems (ITS) become
prevalent and truly useful beyond a specific range of applications.

I. I NTRODUCTION

Intrusion tolerance research has attracted more and more
attention recently. Similar to intrusion detection, it belongs to
the so-called second line of defense mechanisms. It is always
better to keep intruder out of door in the first place, but the
goals of complete detection, and correct and timely response
remain elusive. Unlike intrusion detection, intrusion tolerance
is motivated by the recognition of the fact that intrusions will
occur and some will be successful. There is a wide range
of mission-critical applications that require continuation of
services even when the system is under active attack or some
of its components have been partially compromised. A major
assumption of intrusion tolerance is that protected system can
be faulty and compromisable, and challenge is how to tolerate
faults, be it natural or malicious and to continue to provide
(possibly degraded) services.

DARPA has been sponsoring intrusion tolerance research
through OASIS [1] program for several years. The goal of
this paper is to analyze primary techniques employed for
building highly available, intrusion tolerant systems (ITS).
Large pieces of the foundation of intrusion tolerance are
built upon traditional fault tolerance (software and hardware)
techniques such as diversity, redundancy, acceptance testing,
and ballot voting etc. This paper attempts to characterize how
these techniques are being applied in this new environment
where malicious faults, not natural faults, dominate and what
the potential pitfalls are.

This work is sponsored by DARPA under contract N66001-00-C-8057

The rest of the paper is organized as follows. First, we
present major techniques available for building an ITS. Along
the way, we will discuss how these techniques are being uti-
lized in various research projects and the associated drawbacks
and limitations. Finally, we identify both troubling spots that
require more attention in the community as well as promising
research directions.

II. FUNDAMENTAL TECHNIQUES

In this section, we will present the common techniques em-
ployed by intrusion tolerant systems. Though we concentrate
on tolerance here, we should recognize that identification of
faults is a key to tolerance. In other words, intrusion detection
of some form is required to provide intrusion tolerance.
Most tolerant systems require certain mechanisms to provide
triggers indicating possible intrusions. In our discussion of the
techniques below, we give examples of the past and current
research projects that employ the techniques in different ways
to provide intrusion tolerance. We also identify the limitations
of these techniques where applicable. We acknowledge the fact
that poorly designed mechanisms can themselves be targets of
attacks or can be used as the road to attacks. Where applicable
we mention the mechanisms necessary to alleviate such a
possibility. For conciseness, in this paper, we mainly focus on
intrusion tolerant server technologies, though other areas like
middleware, mobile code and agents have seen active research
in intrusion tolerance.

A. Redundancy and Diversity

The term redundancy has its root in both fault tolerant
hardware/software and distributed systems. It generally refers
to the extra resources allocated to a system that are beyond its
need in normal working conditions. Redundancy is different
from replication, which is just one type of redundancy which
we have all accustomed to: physical resource redundancy. In
[2], Kopetz pointed out two other types of redundancy: time
redundancy and information redundancy. A good example of
time redundancy is the well known time-out technique used
in communication protocol design: if you send a message
and wait for an acknowledgment in response, there is usually
a timeout value and maybe repeated action associated with
it. The timing latitude allowed in this case can tolerate the
temporary faults in communication link etc. For information
redundancy, we need to look no further than modern data



2

transmission: original data is encoded with extra bits embed-
ded to provide functionality such as synchronization and error
correction, i.e. better tolerance to faults. The threshold scheme
described in Section II-D is just an example of information
redundancy: fork shares of data (fromn pieces of divided
data) to be able to reconstruct original dataD, there must be
certain information redundancy embedded in each share.

If we must single out one essential technique for achieving
intrusion tolerance, that would be redundancy technique. In
other words,no redundancy, no tolerance. Within the scope
of intrusion tolerance, however, redundancy alone is seldom
sufficient. This is because if redundant components are pure
replicas of each other, then the uncorrelated fault assump-
tion that many intrusion tolerant systems make is violated
– namely, if the attacker has found a technique to subvert
one component and all are pure replicas, it is likely thatall
components are likewise vulnerable. To combat this, another
common technique used is diversity. Diversity is the prop-
erty that the redundant components should be substantially
different in one or more aspects, from hardware diversity
and operating system diversity, to software implementation
diversity. Additionally, diversity is also applied to time and
space, in that diverse services should be co-located at multiple
sites to protect against local disasters, and that clients may use
time diversity by requesting service at different times.

Given above discussion, it won’t be a surprise to see that
almost all intrusion tolerant systems utilize redundancy in
one form or another. For example, Intrusion Tolerant Server
Infrastructure (ITSI) [3], Hierarchical Adaptive Control QoS
Intrusion Tolerant (HACQIT) System [4], Scalable Intrusion
Tolerant Architecture for Distributed Systems (SITAR) [5]
and Distributed Intrusion Tolerance (DIT) [6] are all designed
with the capability to accommodate one or more COTS web
servers, and each server can run different implementations,
be it Apache, IIS or something else, for diversity. COCA [7]
is another project which aims to design a fault tolerance
online certification authority and claims to be the first system
to integrate a Byzantine quorum system used to achieve
availability: with 3t + 1 COCA servers up tot maybe faulty
or compromised.

Remarks: Increased diversity reduces the risk of correlated
faults, but increases the complexity of the system. To achieve
the highest degree of diversity, it is necessary to have multiple
completely distinct implementations of a service. This would
involve running a mix of operating systems on a mix of
hardware, with separate implementation teams developing
services, at geographically diverse sites. However, the cost
of this diversity quickly becomes prohibitively expensive,
and immature diversity may only increase potential points of
failure, so each party must evaluate for themselves what level
of diversity is appropriate. This can be viewed as a trade-off
between prevention and tolerance.

B. Voting

Redundancy is a key component in providing any kind of
tolerance. As a consequence of having redundant components
in ITS system, it is also paramount that the systems’ non-faulty

components can agree on valid output data in the presence of
the faulty components. While all the replicas of a response
are considered equally reliable, the output must be based on
cross-comparison of available replicas, possibly augmented by
knowledge of the application. Voting is used to resolve any
differences in redundant responses and to arrive at a consensus
result based on the responses of perceived non-faulty compo-
nents in the system. It has two complementary goals: masking
of intrusions, thus tolerating them, and providing integrity
of the data. The process involves comparing the redundant
responses and reaching agreement on the results to find the
“correct” response.

Common metrics for comparison areEdit Distance and
Hash Code. Edit Distance is useful for comparing data where
we need to consider modification (insert/delete/replace) costs.
A number of variants of the edit distance computations exist
[8]: simple edit distance, hamming distance, episode distance
etc. The common Unix utilitydiff uses such an approach.
Hash Code is a useful metric for large data streams. When
computing edit-distance is not-possible or computationally
intensive, a digest of the data can be used as a metric. The
hash code can be computed using some digest function such
as CRC, MD5, or SHA.

These metrics are used in agreement algorithms to arrive
at a plausible “correct” response. A leader/delegate usually
passes on the chosen replica to the client. Common voting
algorithms [9] include:

• Formalized Majority Voting: This is the most commonly
used algorithm, also known as consensus or majority
voting. Here, the replicas are partitioned such that the
difference between no two replicas in a partition is greater
than a threshold. If the partition with the highest number
of replica entries forms the absolute majority, one output
from that partition is chosen as the final response.

• Generalized Median Voting: In this method, a middle
value is selected from the set ofN replicas by systemat-
ically locating those which differ by greatest amount and
eliminating them from consideration.

• Formalized Plurality Voting: This algorithm is similar to
formalized majority voting algorithm but but for the fact
that a relative majority is considered instead of absolute
majority.

Voting can be applied at various layers of the networking
stack including application layer as well as the middleware
layer [10]. SITAR uses edit distance comparison [11] and
formalized majority voting as the primary algorithms. DIT [6]
uses hash code comparison and formalized majority voting in
its architecture. However, both architectures adapt to different
algorithms based on the security posture at any given time.
Some of the common mechanisms used to thwart attacks
against this mechanism include diversity, unpredictable leader
election and more redundancy.

Remarks: There is a trade-off between performance and
confidence in choosing comparison and agreement strategies.
So a balance has to be struck to maximize both. For example,
one could compare the distance of the whole responses to be
completely sure that the responses are same, or do it over
just a part of the responses to be “mostly” sure. Given the



3

unpredictable nature of intrusions, these decisions are hard
to make. Another limitation of these approaches is that they
require a significant amount of redundancy, hence increased
cost.

C. Acceptance Test

The term “acceptance testing” has its root in software fault
tolerance study and generally defined as a developer-provided
error detection measure in a software module [12], in the form
of a check on the reasonableness of the results calculated. It
usually consists of a sequence of statements that will raise an
exception if the state of the system is not acceptable. If any
exception is raised by the acceptance test, the module is said
to have failed or been compromised. We can broadly classify
the testing measures into following categories.

• Requirement test:In many cases, some conditions are
imposed to complete a task. These conditions can be
represented as an expected sequential order of events or
a subset of given events. The requirement test is to make
sure that the imposed conditions are satisfied.

• Reasonableness test:Reasonableness test is used to detect
software/system failures through pre-computed ranges,
expected sequences of program states, or other relation-
ships that are expected to be satisfied. Reasonableness
checks are based on physical constraints, while satis-
faction of requirements tests are based on logical or
mathematical relationships.

• Timing test:Timing test is used in systems with time-
sensitive components to determine whether the execution
time meets the constraints. However, finding out reason-
able parameters is not trivial task. In many cases, certain
learning or profiling techniques need to be employed to
estimate reasonable time parameters.

• Accounting test:It is used for transaction-based appli-
cations that involve simple mathematical operations. Ex-
amples are airline reservation, inventory control systems
etc. A tally for both the total number of records and sum
over all records of a particular data field can be compared
between source and destination, whenever a large number
of records are transmitted or reordered.

• Coding Test:Essentially, it is a validation process using
some form of checksum of current information against
prior signature or knowledge of ”correct” information.

SITAR uses acceptance testing on both the request and the
response streams as a sanity check on them. This mechanism
is very useful for detecting known attacks and also some well
crafted attacks like timing attacks which are otherwise hard
to detect. DIT does semantic checking on its request stream.
Most architectures are augmented by IDSes, therefore they
perform at least rudimentary analysis on the request streams.
Requirement test can be seen as a variant of specification-
based check used in IDS and ITS projects, which essentially
aim to establish a normal profile based on system specification.

Remarks: One limitation of acceptance testing is that the
testing rules are difficult to design and tend to be very
application specific. In other words, we can design certain
generic testing framework, but the real workload is to analyze

the application workflow and come up with reasonable set of
tests. So there is nontrivial development cost associated with
this. However our experience showed that a highly modular
architecture can help a great deal in this regard.

D. Threshold Scheme and Distributed Trust

Threshold scheme is also known as secret sharing, as
proposed by Adi Shamir in his classical paper “How to share a
secret”. The general idea is to devise a method to divide dataD
into n pieces in such a way that it needsk shares to reconstruct
original data D; Anything less, reveals no information at
all. This elegant idea has found many applications in key
management schemes as well as cryptography.

In terms of its application in ITS, there are two primary
ways of using it. First and in its very native form, data
shares can be stored in distributed physical locations such that
even if n − k − 1 shares were attacked and compromised,
the confidentiality are still kept and original data can be
reconstructed, therefore the tolerance. In fact, this form not
only employ threshold scheme, redundancy technique also
comes into play due to the nature of dispersion of data. Second,
data itself can be encrypted with a secret key, and this key is
to be divided inton shares using threshold scheme. This form
doesn’t exactly provide any redundancy to the original data per
se, however, to gain access of the information, you do need
k shares of encryptionkey to construct original key, which
essentially provide “joint control or custody” of information.

Threshold schemes help ensure confidentiality and surviv-
ability. One of the most representative projects is PASIS [13],
a survivable storage system developed at CMU. PASIS makes
use of threshold schemes to analyze trade-offs among security,
availability and performance. Draper Laboratory’s CONTRA
[14] provides protection and tolerance by camouflaging the
messages sent from the source to destination using threshold
schemes. Aforementioned COCA also relies on threshold
scheme to tolerate faults.

Remarks: A major limitation of these schemes is the
choice ofn andk. There is a trade-off between performance,
availability, confidentiality and storage requirements. A high
n ensures high availability at the cost of low performance and
high storage requirements. A lowerk yields high performance
but at the cost of low confidentiality. Threshold schemes are
hard to attack if the values ofn andk are appropriately chosen
and are well guarded by conventional means.

E. Dynamic Reconfiguration

Traditional intrusion detection systems are mostly reactive.
The usual response after an intrusion is detected is to perform
a post-mortem and take corrective and recovery actions. This
is generally a manual task for the administrator and involves
some downtime for the server. Survivable systems on the other
hand, aim to have none or minimal downtime for the service as
far as clients are concerned. They dynamically and adaptively
reconfigure the system so that the service can be uninterrupted.
Reconfiguration can be proactive or reactive and can help in
prevention, elimination as well as tolerance. Reconfiguration
can be effected in several different forms:



4

• Rollover: The affected component is transparently re-
placed by a pristine replica of it.

• Shifting: All the traffic directed to the affected server is
routed to another safe server.

• Load sharing: If the in-availability or degradation in
performance is caused by high load, some form of load
sharing or balancing may be employed.

• Blocking: If a client is perceived to be offending or is
suspicious, the system may decide not to service it.

• Fishbowling: Fishbowling is similar to blocking. Unlike
blocking, however, fishbowling allows the targeted user to
continue receiving service. But, it protects normal users
from being effected by the attackers intent.

• Changing the system’s posture:The system’s multiple
layers of defense can be turned off/on based on the
current operating environments and threat indication.

• Rejuvenation:The affected component is restarted to
restore it to a pristine state wiping out any memory
resident or volatile attacks.

Willow [15], DIT and SITAR do both, proactive and reactive
reconfiguration. Willow’s reconfiguration adds, removes and
replaces components and interconnections, or changes the
modes of operation. DIT reconfigures the system to use
different leader proxy and agreement regime. Additionally
DIT recommends periodic rejuvenation as a proactive mecha-
nism. SITAR assigns incoming connections to random circuits,
changes the redundancy level based on perceived threat and
uses different algorithms for comparison and voting. SITAR
reactively rejuvenates components when a fault that is cor-
rectable by rejuvenation is detected. ITSI shifts, blocks or fish-
bowls the traffic when an attack is detected. HACQIT performs
reconfiguration by rollover of the faulty components using
alternate available hot-spare components. RFITS [16] effects
reconfiguration by virtually moving the protected target.

Remarks: As we can see, a wide variety of reconfiguration
strategies are employed. A challenge in devising the reconfig-
uration mechanism is to protect the mechanism from being
(mis)used by the attacker. It is important that this process
be not very predictable thus making the system vulnerable to
attacks on its reconfiguration mechanism. A major challenge
for reconfiguration systems is to make them unpredictable and
resilient to oscillations in transient effects that may lead to
reconfigurations. Reconfiguration can come with a significant
performance penalty. Hence, if oscillations are not properly
accounted for, it is easy to see that it can trigger a streak of
oscillations thereby driving the system to an inconsistent state.

F. Indirection

Indirection is a common technique in computer science. In
intrusion tolerance, it is often layered, and occurs at several
levels. Indirection allows designers to insert protection barriers
and fault logic between clients and servers. Also, since the
indirection is hidden outside of the black box system, clients
see only what looks like a COTS server. There are at least four
main types of indirection used by intrusion tolerant systems:
proxies, wrappers, virtualizations, and sandboxes. We will
briefly summarize each.

Proxies: A proxy server, usually transparent, is often the
first line of defense of a system. The proxy server accepts all
client requests, and uses its own logic to perform a variety of
functions, including load-balancing, validity testing, signature-
based testing, and fault masking. The proxy acts as the sole
client access point, hiding all behavior behind the proxy
from clients. However, one caveat is that proxy efficiency is
paramount to prevent performance bottlenecks.

SITAR and HACQIT use proxies to export the server
interface to clients, protecting their many functions. Both are
a kind of firewall and load balancing proxy. Since the proxy
is the client endpoint, it is a likely target of attack. Though
current implementations of SITAR and HACQIT do not appear
to have extra protections to guard these, they can benefit from
virtualization and redundant proxies.

Wrappers: Wrappers are most commonly placed directly
around servers (or other wrappers), and inspect requests and
responses before sharing them with other components (but
not end clients). The wrapper also differs from the proxy
in its intimate knowledge of the server. Though a single
proxy/wrapper can be the sole line of defense, commonly
the wrapper is behind other indirections, and is used to add
functionality to a server without changing the COTS server
itself.

Wrappers are commonly employed, such as in SITAR and
Willow. SITAR uses wrappers to allow COTS servers to speak
a SITAR internal language, and Willow’s uses wrappers to
augment the abilities of servers. Since the wrappers are treated
by the rest of the system as the COTS servers, arguably this
addition does not add substantial burden to protection of the
COTS servers.

Virtualizations: Generally speaking, virtualizations are
naming indirections and are often used subtly, without glo-
rification. When requesting a new virtualized service, the
indirection happens as the virtual name is translated into
a real name, allowing the real service to be referenced.
Thereafter, direct access is allowed, reducing the performance
cost of indirections (but then references are not moderated).
Some examples of common virtualizations include memory
subsystems, the DNS system, and RPC. By virtualizing the
names, the details are delayed until needed, and changed as
appropriate.

In our review, RFITS and ITSI exhibited noteworthy virtual-
izations. RFITS is essentially based on virtualization (specifi-
cally, the existence of a large namespace from which mappings
can be dynamically created and changed between an endpoints
virtual channel and the actual channel they communicate
with). By detecting flood attacks and negotiating these changes
unpredictably between endpoints, RFITS can survive many
denial of service flood attacks. RFITS uses cryptography to
protect these negotiations. ITSI also uses virtualization, as an
alternative to a proxy, by having multiple hardware interfaces
share the same MAC address, and using another technique to
determine which interface is the true recipient. Since ITSI uses
a hardware implementation, its virtualization is not vulnerable
to many types of attacks.

Sandboxes:Sandboxes are common tools used to separate
users, servers, and other untrusted components. Essentially,



5

the idea is to run each untrusted component within a sandbox,
where all interactions with other systems and subsystems are
moderated (and usually significantly restricted). Faults can
then be tolerated by the sandbox, by rolling back system
state, instantiating a new component to respond, or rejecting
the requester (or a variety of other methods). Sandboxes thus
provide a window between the untrusted execution, and its
results taking effect. If a fault can be detected before the
results are committed, they can be safely aborted. Sandboxes
are commonly used to protect against faulty mobile code,
and to test and diagnose suspected attacks, because the faulty
behavior can be limited to within the sandbox.

Two of the projects reviewed, ITSI and HACQIT, use
sandboxes. ITSI’s fishbowling is one of the possible outcomes
of reconfiguration, where the communication with servers
is protected within its fishbowl. HACQIT uses a sandbox
as an analysis workbench. Whenever a possible intrusion is
detected, the logs leading up to it and the compromised server
are transferred to the sandbox, and it determines an attack
signature within the safety of a sandbox without further risk
to critical systems.

Remarks: There are a wide variety of indirections, but they
all have a common goal: protection by separating clients and
servers by an additional layer. This comes with two main
costs: first, indirections often add additional overhead and thus
latency, and second, a layer of indirection can violate the End-
to-End argument [17], since client communication ends at the
edge of the IT system, not the server. Developers should be
wary of this when designing these systems.

III. O PEN ISSUES ANDCHALLENGES

In the previous section, we have discussed a wide range
of techniques commonly employed when building a highly
available and intrusion tolerant system. In some cases, we
also mentioned potential problems when applying particular
techniques. In this section, we will present a more elaborate
summary of these open research issues and challenges based
on our experience of working on the SITAR project.

A. Dynamic Content Handling

Many previously discussed intrusion tolerant server projects
assume a transaction-based service model: requests come in,
responses go out. However, in most real-world application
environments, there is usually some kind of back-end database
deployed for providing dynamic content, such as a weather
or financial information database. Things become tricky when
we considerdynamic contentandredundancy and diversity
together. One problem is the lack of semantic encoding in user
data which makes validation difficult. As an example, consider
web services. Although HTML can be validated grammatically
using DTDs, there are two substantial problems with using this
for validation. (1) A large portion of HTML world-wide is not
well formed, causing it to fail this basic validation. (2) This
grammatical validation does not take into account the semantic
meaning of the document. Therefore, it is inherently difficult to
verify if an HTML page correctly expresses its semantic mean-
ing. Dynamic content also presents additional challenges to

acceptance testing and ballot voting techniques since responses
from servers can differ due to implementation differences or
variances in communication delays. Additionally, consistency
presents a significant challenge to a project protecting COTS
servers. Assume the protected service supports both read and
write operations by the client (picture a banking system where
you can transfer money, etc.). On a write operation, the COTS
server will modify its state, without knowledge of what deci-
sion was made by the protection system. The decision actually
taken by the protection system may be contrary to the state
change made by the COTS server. Since the protection system
strives not to modify the COTS server, this seems to present
an uncorrectable inconsistency. Transient failures under such
conditions will either be challenging to recover from, or cause
costly reconfigurations. We investigated alternative options to
add semantic meaning to HTML content, such as Dynamic
HTML, XHTML, Zope Page Templates, XML/XLST, signed
XML etc. They all have pros and cons and some schemes can
mitigate the problem to a certain degree. However, dynamic
content handling overall remains an open issue and need to be
further studied.

B. Tolerance Quantification

Unlike other scientific disciplines in the security world, the
question “How secure is the system?” tends to be described in
qualitative terms. “Qualitative” in the sense that we claim our
system is better than others because we make use of certain

mechanisms, follow particular design procedures or method-
ologies, or use certain algorithms, etc. The open question is
whether there are ways to measure security or tolerance capa-
bility quantitatively. An earlier paper by Dacier [18] deals with
quantitative assessment of operational security by modeling
the system as a privilege graph exhibiting operational security
vulnerability and transforming the graph into a Markov chain
to quantifymean effort and mean time for attack to succeed. In
SITAR [19], we explored the concept further and came up with
a nine-state finite state machine to characterize the transition
of intrusion tolerant systems, and use semi-Markov chains to
model and quantify. Other research efforts include Sanders’
probabilistic validation of intrusion tolerance [20], etc. Despite
these efforts, an often raised question is how realistic these
measurements are due to the difficulty of parameterization
when instantiating the individual models, and the problem at
large remains unresolved.

C. Adaptation and Its Fragility

By definition, adaptation is a process of adjusting to en-
vironmental conditions. Specifically, many intrusion tolerant
systems utilize feedback-loop type of control to monitor the
system states and perform pre-defined actions, known as
reconfiguration processto adapt to current condition. There
are two issues with this approach, first real time and step-less
adaptation are extremely difficult if not impossible. Taking
the SITAR project as an example, the ARM module (adaptive
reconfiguration monitor) is designed to dynamically adjust the
system’s resource allocation to maintain high availability when
under high threat level and maximize performance when under



6

low threat level. Our experience shows that even carefully
tuned adaptation is often prone to oscillation, and the practical
way to deal with the problem is to carefully preset the mapping
between threat levels and allocated resources. At best, this is
a limited version of adaptation.

A more severe potential problem is associated with secu-
rity compromise on these critical modules themselves: what
if adaptation/reconfiguration is the target of attack? Many
systems, including SITAR, make explicit or implicit assump-
tions that the protection mechanisms provided are trusted, or
protected by “other” mechanisms, which might be too naive
an assumption. Knight’s paper [21] discusses the issue in
a larger context, stressing the importance of securing these
survivability mechanisms, while acknowledging the challenges
involved. Whether or not this is wholly possible remains to be
answered.

D. Cost and Benefits

We all know that security comes with a price. The problem
is how to justify the trade-off between cost and benefits.
Intrusion tolerance associated costs come in a variety of forms:
performance, hardware, administration and maintenance, etc.
Let us consider performance costs. Using SITAR system as
an example, for the flexibility and fault tolerance of individual
modules, we have built inter-component communication using
a distributed shared memory architecture called JavaSpaces
so that individual component canjoin or leave the system
both locally and remotely, and they can do so at any time
without significantly disrupting the overall operation. By our
analysis, one incoming message will pass about a dozen
intermediate checking points before it reaches the target server.
The requirement to accommodatelegacy systems and COTS
servers only aggravates the problem. Moreover,diversity
and redundancy techniques in SITAR context also mandate
acceptance test modules to reconcile the time difference of
returned responses as well as be responsible for message re-
assembly, which further degrade the overall system through-
put. Redundancy and diversity add further costs to an in-
stitution’s infrastructure budget. Is it worth it?. The general
consensus seems to be that it is in the eye of beholder,
i.e., if one truly cares for security and intrusion tolerance,
this is the price to pay. Therefore, unless we have better
techniques to achieve better balance between performance and
security, these architectures and techniques might have quite
limited applicability to a specific range of mission-critical
applications.

IV. CONCLUSION

In this paper, we studied various fundamental techniques
for building highly available, intrusion tolerance systems. We
analyzed how a wide range of past and ongoing projects use
these different forms of these techniques to provide various
aspects of intrusion tolerance. In particular, we focused our
attention on the service/server oriented intrusion tolerance
systems. We briefly noted the advantages and limitations of
various approaches. Based on our implementation experience
gained from SITAR project, we also made an effort to discuss

open issues and particular challenging problems as well as
future research directions.

REFERENCES

[1] “Organically assured and survivable information system (OASIS).”
http://www.tolerantsystems.org .

[2] H. Kopetz and P. Verı́ssimo, Real Time and Dependability Concepts,
ch. 16, pp. 411–446. Addison-Wesley, 1993.

[3] D. O’Brien, R. Smith, T. Kappel, and C. Bitzer, “Intrusion tolerant
via network layer controls,” inProceedings of the DARPA Information
Survivability Conference and Exposition (DISCEX’03), pp. 90–96, April
2003.

[4] J. E. Just, J. C. Reynolds, and K. Levitt, “Intrusion tolerance through
forensics-based attack learning,” inIntrusion Tolerant System Workshop,
Supplemental Volume on 2002 International Conference on Dependable
System and Networks, pp. C–4–1, 2002.

[5] F. Wang, F. Gong, F. Jou, and R. Wang, “SITAR: A scalable intrusion
tolerance architecture for distributed service,” inProceedings of the 2001
IEEE Workshop on Information Assurance and Security, (United States
Military Academy, West Point, New York), pp. 38–45, June 4-5 2001.

[6] A. Valdes, M. Almgren, S. Cheung, Y. Deswarte, B. Dutertre, J. Levy,
H. Saidi, V. Stavridou, and T. E. Uribe, “An architecture for an adaptive
intrusion tolerant server,”Springer-Verlag, 2002.

[7] L. Zhou, F. Schneider, and R. van Renesse, “Coca: A secure distributed
on-line certification authority,”ACM Transactions on Computer Systems,
vol. 20, pp. 329–368, nov 2002.

[8] G. Navarro, “A Guided Tour to Approximate String Matching,”ACM
Computing Surveys, vol. 33, no. 1, pp. 31–88, 2001.

[9] P. R. Lorczak, A. K. Caglayan, and D. E. Eckhardt, “A Theoreti-
cal Investigation of Generalized Voters for Redundant Systems,” in
The Nineteenth International Symposium on Fault-Tolerant Computing,
pp. 444 – 451, 1989.

[10] A. Franz, R. Mista, D. Bakken, C. Dyreson, and M. Medidi, “Mr.
fusion: A programmable data fusion middleware subsystem with a
tunable statistical profiling service,” inProceedings of the International
Conference on Dependable Systems and Networks (DSN-2002), pp. 273–
278, 2002.

[11] R. Uppalli, R. Wang, and F. Wang, “Design of a ballot monitor for
an intrusion tolerant system,” inSupplemental Volume of the Interna-
tional Conference on Dependable Systems and Networks (DSN-2002),
pp. B60–B61, 2002.

[12] P. A. Lee and T. Anderson,Fault Tolerance: Principles and Practice.
Springer Verlag, 1990.

[13] G. R. Ganger, P.Khosla, M. Bakkaloglu, M. Bigrigg, G. Goodson,
S. Oguz, V. Pandurangan, C. Soules, J. Strunk, and J. Wylie, “Survivable
storage systems,” inDARPA Information Survivability Conference and
Exposition, DISCEX II, vol. 2, pp. 184–195, 2001.

[14] J. Lepanto and W. Weinstein, “Contra: Camouflage of Network Traffic
to Resist Attacks.”http://www.tolerantsystems.org , 2000.

[15] J. Knight, D. Heimbigner, and A. Wolf, “The willow architecture:
Comprehensive survivability for large-scale distributed applications,”
in Intrusion Tolerant System Workshop, Supplemental Volume on 2002
International Conference on Dependable System and Networks, pp. C–
7–1, 2002.

[16] R. S. Ramanujan, “Project summary: Randomized failover intrusion
tolerant systems.”http://www.tolerantsystems.org , 2000.

[17] J. Salzer, D. Reed, and D. Clark, “End-to-end arguments in system
design,”ACM Transactions on Computer Systems, vol. 2, no. 4, pp. 195–
206, 1984.

[18] M. Dacier, Y. Deswarte, and M. Kaâniche, “Quantitative assessment
of operational security: Models and tools,” Tech. Rep. 96493, LAAS
Rsearch Report, May, 1996.

[19] K. Goseva-Postojanova, F. Wang, R. Wang, F. Gong, K. Vaidyanathan,
K. Trivedi, and B. Muthusamy, “Characterizing Intrusion Tolerant
Systems Using A State Transition Model,” inDARPA Information
Survivability Conference and Exposition, DISCEX II, vol. 2, pp. 211–
221, 2001.

[20] W. H. Sanders, M. Cukier, F. Webber, P. Pal, , and R. Watro, “Probabilis-
tic validation of intrusion tolerance,” inDigest of Fast Abstracts: The
International Conference on Dependable Systems and Networks, 2002.

[21] J. C. Knight, K. J. Sullivan, M. C. Elder, and C. Wang, “Survivability ar-
chitectures: Issues and approaches,” inDARPA Information Survivability
Conference and Exposition, DISCEX I, vol. 2, pp. 157–171, 2000.


